
Arrested Documentation
Release 0.1.3

Mikey Waites

May 15, 2018

Contents

1 Introducing Arrested 3

2 Flask-Arrested Features 5

3 Get started in under a minute.. 7

4 The User Guide 9
4.1 Introduction . 9
4.2 Installation . 9
4.3 Guide . 9

5 Integrations & Recipies 23
5.1 Flask-SQLAlchemy . 23
5.2 Kim . 26
5.3 Marshmallow . 27

6 The API Documentation / Guide 29
6.1 Developer Interface . 29

Python Module Index 39

i

ii

Arrested Documentation, Release 0.1.3

Contents 1

https://pypi.python.org/pypi/arrested
https://pypi.python.org/pypi/arrested
https://pypi.python.org/pypi/arrested
https://circleci.com/gh/mikeywaites/flask-arrested/tree/master
http://arrested.readthedocs.io/en/latest/
https://coveralls.io/github/mikeywaites/flask-arrested?branch=master
https://gitter.im/bruv-io/Arrested

Arrested Documentation, Release 0.1.3

2 Contents

CHAPTER 1

Introducing Arrested

Take the pain out of REST API creation with Arrested - batteries included for quick wins, highly extensible for
specialist requirements.

from arrested import ArrestedAPI, Resource, Endpoint, GetListMixin, CreateMixin,
from example.models import db, Character

api_v1 = ArrestedAPI(url_prefix='/v1')

characters_resource = Resource('characters', __name__, url_prefix='/characters')

class CharactersIndexEndpoint(Endpoint, GetListMixin, CreateMixin):

name = 'list'
many = True

def get_objects(self):

characters = db.session.query(Character).all()
return characters

def save_object(self, obj):

character = Character(**obj)
db.session.add(character)
db.session.commit()
return character

characters_resource.add_endpoint(CharactersIndexEndpoint)
api_v1.register_resource(characters_resource)

3

Arrested Documentation, Release 0.1.3

4 Chapter 1. Introducing Arrested

CHAPTER 2

Flask-Arrested Features

Arrested is a framework for rapidly building REST API’s with Flask.

• Un-Opinionated: Let’s you decide “the best way” to implement your REST API.

• Battle Tested: In use across many services in a production environment.

• Batteries Included! Arrested ships with built in support for popular libraries such as SQLAlchemy, Kim and
Marshmallow. Using something different or have your own tooling you need to support? Arrested provides a
rich API that can be easily customised!

• Supports any storage backends: Want to use “hot new database technology X?” No problem! Arrested can be
easily extended to handle all your data needs.

• Powerful middleware system - Inject logic at any step of the request/response cycle

5

Arrested Documentation, Release 0.1.3

6 Chapter 2. Flask-Arrested Features

CHAPTER 3

Get started in under a minute..

Use the Flask-Arrested cookie cutter to create a basic API to get you started in 4 simple commands. https://github.
com/mikeywaites/arrested-cookiecutter.

$ cookiecutter gh:mikeywaites/arrested-cookiecutter
$ cd arrested-users-api
$ docker-compose up -d api
$ curl -u admin:secret localhost:8080/v1/users | python -m json.tool

7

https://github.com/mikeywaites/arrested-cookiecutter
https://github.com/mikeywaites/arrested-cookiecutter

Arrested Documentation, Release 0.1.3

8 Chapter 3. Get started in under a minute..

CHAPTER 4

The User Guide

Get started with Flask-Arrested using the quickstart user guide or take a look at the in-depth API documentation.

4.1 Introduction

Why Arrested?

4.2 Installation

This part of the documentation covers the installation of Arrested. The first step to using any software package is
getting it properly installed.

4.2.1 Pip Install Flask-Arrested

To install Arrested, simply run this command in your terminal of choice:

$ pip install arrested

4.3 Guide

Eager to get going? This page gives an introduction to getting started with Flask-Arrested.

First, make sure that:

• Arrested is installed

This tutorial steps through creating a simple Star Wars themed REST API using Arrested. We assume you have a
working knowledge of both Python and Flask.

9

Arrested Documentation, Release 0.1.3

4.3.1 Example Application

The examples used in this guide can be found here https://github.com/mikeywaites/flask-arrested/tree/master/example.

Note: To follow along with the example you will need to install Docker for your operating system. Find out how here
https://docker.com.

Alternatively you can use the Arrested cookiecutter to create a working API in 4 simple commands. https://github.
com/mikeywaites/arrested-cookiecutter.

4.3.2 APIs, Resources and Endpoints - Defining your first API

Flask-Arrested is split into 3 key concepts. ArrestedAPI’s, Resource and Endpoint. APIs contian multiple
Resources. For example Our API contains a Characters resource, a Planets resource and so on. Resources are a
collection of Endpoints. Endpoints define the urls inside of our Resources /v1/charcaters /v1/planets/
hfyf66775gjgjjf etc.

from flask import Flask

from arrested import (
ArrestedAPI, Resource, Endpoint, GetListMixin, CreateMixin,
GetObjectMixin, PutObjectMixin, DeleteObjectMixin, ResponseHandler

)

from example.hanlders import DBRequestHandler, character_serializer
from example.models import db, Character

app = Flask(__name__)
api_v1 = ArrestedAPI(app, url_prefix='/v1')
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////opt/code/example/starwars.db'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
db.init_app(app)

characters_resource = Resource('characters', __name__, url_prefix='/characters')

class CharactersIndexEndpoint(Endpoint, GetListMixin, CreateMixin):

name = 'list'
many = True
response_handler = DBResponseHandler

def get_response_handler_params(self, **params):

params['serializer'] = character_serializer
return params

def get_objects(self):

characters = db.session.query(Character).all()
return characters

def save_object(self, obj):

character = Character(**obj)
(continues on next page)

10 Chapter 4. The User Guide

https://github.com/mikeywaites/flask-arrested/tree/master/example
https://docker.com
https://github.com/mikeywaites/arrested-cookiecutter
https://github.com/mikeywaites/arrested-cookiecutter

Arrested Documentation, Release 0.1.3

(continued from previous page)

db.session.add(character)
db.session.commit()
return character

class CharacterObjectEndpoint(Endpoint, GetObjectMixin,
PutObjectMixin, DeleteObjectMixin):

name = 'object'
url = '/<string:obj_id>'
response_handler = DBResponseHandler

def get_response_handler_params(self, **params):

params['serializer'] = character_serializer
return params

def get_object(self):

obj_id = self.kwargs['obj_id']
obj = db.session.query(Character).filter(Character.id == obj_id).one_or_none()
if not obj:

payload = {
"message": "Character object not found.",

}
self.return_error(404, payload=payload)

return obj

def update_object(self, obj):

data = self.request.data
allowed_fields = ['name']

for key, val in data.items():
if key in allowed_fields:

setattr(obj, key, val)

db.session.add(obj)
db.session.commit()

return obj

def delete_object(self, obj):

db.session.delete(obj)
db.session.commit()

characters_resource.add_endpoint(CharactersIndexEndpoint)
characters_resource.add_endpoint(CharacterObjectEndpoint)
api_v1.register_resource(characters_resource)

Start the Docker container in the example/ directory.

4.3. Guide 11

Arrested Documentation, Release 0.1.3

$ docker-compose run --rm --service-ports api

Fetch a list of Character objects..

curl -X GET localhost:5000/v1/characters | python -m json.tool

{
"payload": [

{
"created_at": "2017-06-04T11:47:02.017094",
"id": 1,
"name": "Obe Wan"

}
]

}

Add a new Character..

curl -H "Content-Type: application/json" -d '{"name":"Darth Vader"}' -X POST
→˓localhost:5000/v1/characters | python -m json.tool

{
"payload": [

{
"created_at": "2017-09-01T04:51:45.456072",
"id": 2,
"name": "Darth Vader"

}
]

}

Fetch a Character by id..

curl -X GET localhost:5000/v1/characters/2 | python -m json.tool

{
"payload": {

"created_at": "2017-09-01T04:51:45.456072",
"id": 2,
"name": "Darth Vader"

}
}

Update a Character by id..

curl -H "Content-Type: application/json" -d '{"id": 2, "name":"Anakin Skywalker",
→˓"created_at": "2017-09-01T04:51:45.456072"}' -X PUT localhost:5000/v1/characters/2
→˓| python -m json.tool

{
"payload": {

"created_at": "2017-09-01T04:51:45.456072",
"id": 2,
"name": "Anakin Skywalker"

}
}

And finally, Delete a Character by id..

12 Chapter 4. The User Guide

Arrested Documentation, Release 0.1.3

curl -X DELETE localhost:5000/v1/characters/2

URLS && url_for

URLSs are automatically defined by Resoruces and Endpoints using Flask’s built in url_mapping functionality. We
optionally provide Resource with a url_prefix which is applied to all of it’s registered Endponts. We can also specify a
URI segment for the Endpoint using the url parameter. Endpoints require that the name attribute is provied. This is
the name used when reversing the url using Flask’s url_for function. Ie url_for(‘news.list’) where new is the name
given to the Resource and list of the name of one of its registered endpoints.

Getting objects

We defined an Endpoint within our characters Resource that accepts incoming GET requests to /v1/characters. This
Endpoint fetches all the Character objects from the database and our custom DBRequestHandler handles converting
them into a format that can be serialized as JSON. The topic of Request and Response handling is covered in more
detail below so for now let’s take a closer look at the GetListMixin mixin.

GetListMixin provides automatic handling of GET requests. It requires that we define a single method
GetListMixin.get_objects. This method should return data that our specified ResponseHandler can seri-
alize.

We tell Arrested that this endpoint returns many objects using the many class attribute. This setting is used by certain
Response handlers when serializing the objects returned by Endpoints.

import redis
from arrested import Endpoint, GetListMixin

class NewsEndpoint(Endpoint, GetListMixin):

many = True
name = 'list'

def get_objects(self, obj):

r = redis.StrictRedis(host='localhost', port=6379, db=0)
return r.hmget('news')

Saving objects

The CharactersIndexEndpoint also inherits the CreateMixin. This mixin provides functionality for handling POST
requests. The CreateMixin requires that the save_object method be implemented. The save_object method
will be called with the obj or objects processed by the Endpoint’s defined request_handler.

Here’s an example Endpoint that store the incoming JSON data in Redis.

import redis
from arrested import Endpoint, GetListMixin, CreateMixin

class CustomEndpoint(Endpoint, GetListMixin, CreateMixin):

many = True
name = 'list'

(continues on next page)

4.3. Guide 13

Arrested Documentation, Release 0.1.3

(continued from previous page)

def get_objects(self, obj):

r = redis.StrictRedis(host='localhost', port=6379, db=0)
return r.hmget('news')

def save_object(self, obj):

obj will be a dict here as we're using the default RequestHandler
r.hmset('news', obj)
return obj

Object Endpoints

Object endpoints allow you to define APIS that typically let your users GET, PUT, PATCH and DELETE single objects.
The Mixins can be combined to provide support for all the typical HTTP methods used when working with a single
object. Regardless of the HTTP methods you’re supporting, your object endpoints must provide the get_object
method.

Getting a single object

To support GET requests that retrieve a single object from an Endpoint you should use the GetObjectMixin. In
addition to the get_object method, we have also specified a url class attribute. Arrested will populate a kwargs property
on your Endpoint instance which contains the named url paramaters from your Endpoint’s url.

Below we use the obj_id passed as part of the url to fetch a new item from Redis by ID.

import redis
from arrested import Endpoint, GetObjectMixin

class CustomEndpoint(Endpoint, GetObjectMixin):

url = '/<str:obj_id>'
name = 'object'

def get_object(self, obj):

news_id = self.kwargs['obj_id']
r = redis.StrictRedis(host='localhost', port=6379, db=0)
return r.hmget('news:%s' % news_id)

Updating an object

Support for updating objects is provided by the PutObjectMixin. PutObjectMixin requires two methods be im-
plemented. get_object and update_object.

import redis
from arrested import Endpoint, PutObjectMixin

class CustomEndpoint(Endpoint, PutObjectMixin):

url = '/<str:obj_id>'
name = 'object'

(continues on next page)

14 Chapter 4. The User Guide

Arrested Documentation, Release 0.1.3

(continued from previous page)

def get_object(self, obj):

news_id = self.kwargs['obj_id']
r = redis.StrictRedis(host='localhost', port=6379, db=0)
return r.hmget('news:%s' % news_id)

def update_object(self, obj):

news_id = self.kwargs['obj_id']
r = redis.StrictRedis(host='localhost', port=6379, db=0)
return r.hmset('news:%s' % news_id, obj)

When a PUT request is handled by our CustomEndpoint the get_object method is called first to retrieve the
existing object. If an object is found the PutObjectMixin.update_object method is then called.

To support updating objects via PATCH requests all we need to do is use the PatchObjectMixin. It works in
same way as PutObjectMixin except that we the patch_object method is called when an object is returned
by get_object.

import redis
from arrested import Endpoint, PutObjectMixin, PatchObjectMixin

class CustomEndpoint(Endpoint, PutObjectMixin, PatchObjectMixin):

url = '/<str:obj_id>'
name = 'object'

def get_object(self, obj):

news_id = self.kwargs['obj_id']
r = redis.StrictRedis(host='localhost', port=6379, db=0)
return r.hmget('news:%s' % news_id)

def do_update(self, obj):

news_id = self.kwargs['obj_id']
r = redis.StrictRedis(host='localhost', port=6379, db=0)
return r.hmset('news%s' % news_id, obj)

def update_object(self, obj):

self.do_update(obj)

def patch_object(self, obj):

self.do_update(obj)

Deleting objects

Support for deleting objects is provided by the DeleteObjectMixin. DeleteObjectMixin requires two methods
be implemented. get_object and delete_object.

import redis
from arrested import Endpoint, DeleteObjectMixin

(continues on next page)

4.3. Guide 15

Arrested Documentation, Release 0.1.3

(continued from previous page)

class CustomEndpoint(Endpoint, DeleteObjectMixin):

url = '/<str:obj_id>'
name = 'object'

def get_object(self, obj):

news_id = self.kwargs['obj_id']
r = redis.StrictRedis(host='localhost', port=6379, db=0)
return r.hmget('news:%s' % news_id)

def delete_object(self, obj):

news_id = self.kwargs['obj_id']
return r.delete('news:%s' % news_id)

4.3.3 Middleware

Flask comes with a great system for defining request middleware. Arrested builds on top of this system to allow more
fine grained control of where and when your middleware is run.

API Middleware

Middleware can be applied at each level of the Arrested stack. You will often want a piece middleware to be ap-
plied across every resource and every endpoint defined in an API. An example of this might be authentication. The
ArrestedAPI object supports two middleware hooks, before_all_hooks and after_all_hooks. Let’s
create a basic example that demonstrates how authentication can be applied across APIs.

def authenticated(endpoint):
token_valid = request.args.get('token') == 'test-token'
if not token_valid:

endpoint.return_error(401)

api_v1 = ArrestedAPI(app, url_prefix='/v1', before_all_hooks=[authenticated])

Hit the http://localhost:5000/v1/characters url in your browser. We now get a 401 status code when
requesting the characters API. A second request, this time providng our API token should return our character objects.
http://localhost:5000/v1/characters?token=test-token

Resource Middleware

Middleware can also be applied on a per Resource basis. Resource, Like the ArrestedAPI object
also has two options for injecting middleware into the request/response cycle. before_all_hooks and
after_request_hook. Let’s add some logging code to our characters resource using an after request hook.

def log_request(endpoint, response):

app.logger.debug('request to characters resource made')
return response

characters_resource = Resource('characters', __name__, url_prefix='/characters',
→˓after_all_hooks=[log_request]) (continues on next page)

16 Chapter 4. The User Guide

Arrested Documentation, Release 0.1.3

(continued from previous page)

Our middleware is slightly different from the authenication example. When we’re dealing with an after request hook
we are also passed the response object as well as the endpoint instance. The response object should be returned from
every after request hook defined on our APIs and Resources.

Endpoint Middleware

Lastly we come to the Endpoint object. Endpoint supports defining middleware using the following hooks:

• before_all_hooks

• before_get_hooks

• after_get_hooks

• before_post_hooks

• after_post_hooks

• before_put_hooks

• after_put_hooks

• before_patch_hooks

• after_patch_hooks

• before_delete_hooks

• after_delete_hooks

• after_all_hooks

As you can see, not only can we dfine the before_all_hooks and after_all_hooks like we have on the ArrestedAPI
and Resource, we can also inject middleware before and after each HTTP method. Let’s update our CharacterOb-
jectEndpoint to require an admin for PUT requests.

def is_admin(endpoint):

endpoint.return_error(403)

class CharacterObjectEndpoint(Endpoint, GetObjectMixin,
PutObjectMixin, DeleteObjectMixin):

name = 'object'
url = '/<string:obj_id>'
response_handler = DBResponseHandler
before_put_hooks = [is_admin,]

def get_response_handler_params(self, **params):

params['serializer'] = character_serializer
return params

def get_object(self):

obj_id = self.kwargs['obj_id']
obj = db.session.query(Character).filter(Character.id == obj_id).one_or_none()
if not obj:

(continues on next page)

4.3. Guide 17

Arrested Documentation, Release 0.1.3

(continued from previous page)

payload = {
"message": "Character object not found.",

}
self.return_error(404, payload=payload)

return obj

def update_object(self, obj):

data = self.request.data
allowed_fields = ['name']

for key, val in data.items():
if key in allowed_fields:

setattr(obj, key, val)

db.session.add(obj)
db.session.commit()

return obj

def delete_object(self, obj):

db.session.delete(obj)
db.session.commit()

Making a PUT request to http://localhost:5000/v1/characters/1 using curl now returns a 403

4.3.4 Handling Requests and Responses

Arrested provides a flexible API for handling the data flowing into, and out from your APIs. Each endpoint can have
a custom RequestHandler and ResponseHandler. This system provides support for any concievable way of
processing data. Arrested also provides some out of the box integrations with popular serialization libraries, such as
Kim and Marshmallow.

Request Handling

HTTP requests that process data require that a RequestHandler is defined on the Endpoint using the re-
quest_handler property. The default RequestHandler simply pulls the json data from the Flask request object,
deserialises it into a dict and returns it verbatim. Let’s suppose we want to apply some very basic validation ensuring
that certain keys are present within the request payload. To do this we will implement a custom RequestHandler
that takes a list of field names and ensures all the keys are present in the request data.

from arrested.handlers import RequestHandler

class ValidatingRequestHandler(RequestHandler):

def __init__(self, endpoint, fields=None, *args, **kwargs):

super(ValidatingRequestHandler, self).__init__(endpoint, *args, **params)
self.fields = fields

def handle(self, data, **kwargs):
(continues on next page)

18 Chapter 4. The User Guide

Arrested Documentation, Release 0.1.3

(continued from previous page)

if self.fields and not sorted(data.keys()) == sorted(self.fields):
payload = {

"message": "Missing required fields",
}
self.endpoint.return_error(422, payload=payload)

return super(ValidatingRequestHandler, self).handle(data, **kwargs)

class CustomEndpoint(Endpoint, GetListMixin, CreateMixin):

many = True
name = 'list'
request_handler = ValidatingRequestHandler

def get_objects(self, obj):

r = redis.StrictRedis(host='localhost', port=6379, db=0)
return r.hmget('news')

def save_object(self, obj):

obj will be a dict here as we're using the default RequestHandler
return r.hmset('news', obj)

def get_request_handler_params(self, **params):

params = super(KimEndpoint, self).get_request_handler_params(**params)
params['fields'] = ['field_one', 'field_two']

return params

This simple examples demonstrates the flexibility the handler system offers. We can define handlers to accomodate
any use case imaginable in Python. We can use the Endpoint.get_request_handler_params to configure
the handler on an endpoint by endpoint basis.

Accessing the Request object

We’ve seen how to define a custom handler and how we configure it to process incoming data. So what does arrested
do with all this stuff? Whenever a POST, PUT, PATCH request is made to one of your Endpoint arrested will
instantiate the request object and set it on the Endpoint. This allows users to access the handler instance used
to process the incoming request. An example of this in practice is the CreateMixin.handle_post_request
method.

def handle_post_request(self):
"""Handle incoming POST request to an Endpoint and marshal the request data
via the specified RequestHandler. :meth:`.CreateMixin.save_object`. is then
called and must be implemented by mixins implementing this interfce.

.. seealso::
:meth:`CreateMixin.save_object`
:meth:`Endpoint.post`

"""
self.request = self.get_request_handler()

(continues on next page)

4.3. Guide 19

Arrested Documentation, Release 0.1.3

(continued from previous page)

self.obj = self.request.process().data

self.save_object(self.obj)
return self.create_response()

Response Handling

Endpoints that return data will typically require that a ResponseHandler be defined on the Endpoint using the
response_handler property. The default ResponseHandler simply attempts to serialize the obj passed to it using
json.dumps. This works fine in simple cases but when we’re dealing with more complex types like SQLAlchemy
Models we need something a bit smarter.

Let’s look at implementing a simple ResponseHandler that removes some fields from response data.

from arrested.handlers import RequestHandler

class ValidatingResponseHandler(RequestHandler):

def __init__(self, endpoint, fields=None, *args, **kwargs):

super(ValidatingRequestHandler, self).__init__(endpoint, *args, **params)
self.fields = fields

def handle(self, data, **kwargs):

new_data = {}
for key, value in data.items():

if key in self.fields:
new_data[key] = value

return super(ValidatingResponseHandler, self).handle(new_data, **kwargs)

class CustomEndpoint(Endpoint, GetListMixin, CreateMixin):

many = True
name = 'list'
response_handler = ValidatingResponseHandler

def get_objects(self, obj):

r = redis.StrictRedis(host='localhost', port=6379, db=0)
return r.hmget('news')

def save_object(self, obj):

obj will be a dict here as we're using the default RequestHandler
return r.hmset('news', obj)

def get_response_handler_params(self, **params):

params = super(KimEndpoint, self).get_response_handler_params(**params)
params['fields'] = ['field_one',]

return params

20 Chapter 4. The User Guide

Arrested Documentation, Release 0.1.3

Accessing the Response object

As we saw with the Request object, Arrested will store the response handler instance against a property on the Endpoint
called response. By default a ResponseHandler is created for any request handled by an Endpoint. This means that
the data generated by a RequestHandler will later be processed and returned by the provided ResponseHandler. We
can see this in action in the PutObjectMixin mixin shown below.

class PutObjectMixin(HTTPMixin, ObjectMixin):
"""Base PutObjectMixins class that defines the expected API for all PutObjectMixin
"""

def object_response(self, status=200):
"""Generic response generation for Endpoints that return a single
serialized object.

:param status: The HTTP status code returned with the response
:returns: Response object
"""

self.response = self.get_response_handler()
self.response.process(self.obj)
return self._response(self.response.get_response_data(), status=status)

def put_request_response(self, status=200):
"""Pull the processed data from the response_handler and return a response.

:param status: The HTTP status code returned with the response

.. seealso:
:meth:`ObjectMixin.object_response`
:meth:`Endpoint.handle_put_request`

"""

return self.object_response(status=status)

def handle_put_request(self):
"""
"""
obj = self.obj
self.request = self.get_request_handler()
self.request.process()

self.update_object(obj)
return self.put_request_response()

def update_object(self, obj):
"""Called by :meth:`PutObjectMixin.handle_put_request` ater the incoming data

→˓has
been marshalled by the RequestHandler.

:param obj: The marhsaled object from RequestHandler.
"""
return obj

4.3. Guide 21

Arrested Documentation, Release 0.1.3

Handling Errors

Returning specific HTTP status codes under certain conditions is an important part of building REST APIs. Arrested
provides users with a simple, and consistent way to handle generating error responses from their Endpoints. An
example of this might be returning a 404 when an object is not found.

Our CharacterObjectEndpoint has already demonstrated this above in the get_object method. When we fail to find the
object we’re looking for from the database, we call the Endpoint.return_error method to have Flask abort
execution of the request and immediately return an error.

We simply provide the status code we want to return along with an optional request payload that will be serialized as
JSON and retured as the response body.

def get_object(self):

obj_id = self.kwargs['obj_id']
obj = db.session.query(Character).filter(Character.id == obj_id).one_or_none()
if not obj:

payload = {
"message": "Character object not found.",

}
self.return_error(404, payload=payload)

return obj

22 Chapter 4. The User Guide

CHAPTER 5

Integrations & Recipies

5.1 Flask-SQLAlchemy

Arrested comes with built in support for working with Flask-SQLAlchemy. The SQLAlchemy mixins support au-
tomatically committing the database session when saving objects, filtering Queries by a model’s primary key when
fetching single objects and the removal of objects from the database when deleting. Simply put, the SQLAlchemy
mixin takes care of the boring stuff when integrating Arrested with SQLAlchemy.

Note: The referrence to Flask-SQLAlchemy does not strictly mean you can’t use vanilla SQLAlchemy with Ar-
rested. See the section on providing access to the SQLAlchemy session object below for more information on custom
configurations.

5.1.1 Usage

Let’s refactor the Characters resource from the quickstart example application to integrate with Flask-SQLAlchemy.

from arrested.contrib.sql_alchemy import DBListMixin, DBCreateMixin, DBObjectMixin

class CharacterMixin(object):

response_handler = DBResponseHandler
model = Character

def get_query(self):

stmt = db.session.query(Character)
return stmt

class CharactersIndexEndpoint(Endpoint, DBListMixin, DBCreateMixin, CharacterMixin):

(continues on next page)

23

Arrested Documentation, Release 0.1.3

(continued from previous page)

name = 'list'
many = True

def get_response_handler_params(self, **params):

params['serializer'] = character_serializer
return params

class CharacterObjectEndpoint(Endpoint, DBObjectMixin, CharacterMixin):

name = 'object'
url = '/<string:obj_id>'

def get_response_handler_params(self, **params):

params['serializer'] = character_serializer
return params

def update_object(self, obj):

data = self.request.data
allowed_fields = ['name']

for key, val in data.items():
if key in allowed_fields:

setattr(obj, key, val)

return super(CharacterObjectEndpoint, self).update_object(obj)

We’ve managed to remove quite a bit of boilerplate code by using the DBMixins provided by the SQLAlchemy contrib
module. We no longer need to add the objects to the session ourselves when creating or updating objects. We also
removed the code from get_object that would return a 404 if the object was not found as the DBObjectMixin, by
default, does this for us. Lastly, we removed the delete_object method as the DBObjectMixin takes care of this by
default.

DBListMixin

The DBListMixin mixin implments the standard GetListMixin interface. We’d normally be required to im-
plement the GetListMixin.get_objects method. DBListMixin handles this method and instead requires the
get_query method. This method should return a Query object as opposed to a scalar Python type. DBListMixin
will automatically call .all() on the Query object for you. If for some reason you need to handle this yourself you
can overwrite the get_result method.

def get_query(self):

return db.session.query(Character).all()

def get_result(self, query):

if isinstance(query, list):
return query

else:
return query.all()

24 Chapter 5. Integrations & Recipies

Arrested Documentation, Release 0.1.3

DBObjectMixin

The DBListMixin mixin implements the ObjectMixin interface. It provides handling for GET, PATCH, PUT
and DELETE requests for single objects in a single mixin. When implementing the DBObjectMixin interace we’d
normally be required to implement the get_object method. Instead the DBObjectMixin requires the get_query
method. This method should return a Query object opposed to a scalar Python type. DBObjectMixin will automatically
apply a WHERE clause to filter the returned Query object by the primary key of the Endpoints model.

Filtering queries by id

The automatic filtering of the returned Query object can be configured using some class level attributes exposed by the
DBObjectMixin class.

class CharacterObjectEndpoint(Endpoint, DBObjectMixin, CharacterMixin):

name = 'object'
url = '/<string:slug>'
url_id_param = 'slug'
model_id_param = 'slug'

def get_response_handler_params(self, **params):

params['serializer'] = character_serializer
return params

def update_object(self, obj):

data = self.request.data
allowed_fields = ['name']

for key, val in data.items():
if key in allowed_fields:

setattr(obj, key, val)

return super(CharacterObjectEndpoint, self).update_object(obj)

The model_id_param and url_id_param are used in conjunction to pull a custom kwarg from our url_mapping
rule and then use it to filter a “slug” field on our model.

Cutom result handling

We can also control how DBObjectMixin converts the Query obejct returned by get_query into a scalar Python type
using the get_result. By default, DBObjectMixin will call one_or_none() on the Query object returned.

def get_result(self, query):

We've already handled the query, just return it..
return query

5.1.2 Custom Session configuration

Arrested assumes that you’re using SQLAlchemy with Flask. You can configure the DBMixins to work with other
flavours of SQLAlchemy setup’s. By default Arrested will attempt to pull the SQLAlchemy db session from you Flask

5.1. Flask-SQLAlchemy 25

Arrested Documentation, Release 0.1.3

app’s configured extensions. The get_db_session method simply needs to return a valid SQLAlchemy session
object.

def get_db_session(self):
"""Returns the session configured against the Flask appliction instance.
"""
return my_session

5.2 Kim

Kim is a Serialization and Marshaling framework. Arrested provides out of the box integration with Kim, providing
you with the ability to serialize and deserialize complex object types.

You can read more about Kim at Read the docs. or check out the source code on GitHub.

Let’s refactor the Characters resource from the quickstart example application to integrate with Kim.

5.2.1 Usage

from arrested.contrib.kim_arrested import KimEndpoint
from kim import Mapper, field, role

class CharacterMapper(Mapper):
__type__ = Character

id = field.Integer(read_only=True)
name = field.String()
created_at = field.Datetime(read_only=True)

class CharactersIndexEndpoint(KimEndpoint, GetListMixin, CreateMixin):

name = 'list'
many = True
mapper_class = CharacterMapper

def get_objects(self):

characters = db.session.query(Character).all()
return characters

def save_object(self, obj):

db.session.add(obj)
db.session.commit()
return obj

class CharacterObjectEndpoint(KimEndpoint, GetObjectMixin,
PutObjectMixin, DeleteObjectMixin):

name = 'object'
url = '/<string:obj_id>'

(continues on next page)

26 Chapter 5. Integrations & Recipies

http://kim.rtfd.org
https://github.com/mikeywaites/kim

Arrested Documentation, Release 0.1.3

(continued from previous page)

mapper_class = CharacterMapper

def get_object(self):

obj_id = self.kwargs['obj_id']
obj = db.session.query(Character).filter(Character.id == obj_id).one_or_none()
if not obj:

payload = {
"message": "Character object not found.",

}
self.return_error(404, payload=payload)

return obj

def update_object(self, obj):

db.session.add(obj)
db.session.commit()

return obj

def delete_object(self, obj):

db.session.delete(obj)
db.session.commit()

So what’s changed? Firstly we are now using the KimEndpoint class when defining our Endpoints. This Cus-
tom base Endpoint does the grunt work for us. It defines the custome Kim Response and Request handlers and the
get_response_handler_params and get_request_handler_params methods to set them up.

This has had some impact on our CharactersIndexEndpoint and CharacterObjectEndpoint too. We no longer need to
manually instantiate the Character model ourselves and we’ve thankfully removed that really basic validation from the
update_object method. Kim now provides robust validation of the data coming into our API ensuring data is present
and of the correct type.

5.3 Marshmallow

Coming soon.

5.3. Marshmallow 27

Arrested Documentation, Release 0.1.3

28 Chapter 5. Integrations & Recipies

CHAPTER 6

The API Documentation / Guide

Detailed class and method documentation

6.1 Developer Interface

This part of the documentation covers all the interfaces of Arrested.

6.1.1 API

class arrested.api.ArrestedAPI(app=None, url_prefix=”, before_all_hooks=None, af-
ter_all_hooks=None)

ArrestedAPI defines versions of your api on which Endpoint are registered It acts like Flasks Blueprint
object with a few minor differences.

Constructor to create a new ArrestedAPI object.

Parameters

• app – Flask app object.

• url_prefix – Specify a url prefix for all resources attached to this API. Typically this is
used for specifying the API version.

• before_all_hooks – A list containing funcs which will be called before every request
made to any resource registered on this Api.

• after_all_hooks – A list containing funcs which will be called after every request
made to any resource registered on this Api.

Usage:

app = Flask(__name__, url_prefix='/v1')
api_v1 = ArrestedAPI(app)

29

Arrested Documentation, Release 0.1.3

init_app(app)
Initialise the ArrestedAPI object by storing a pointer to a Flask app object. This method is typically used
when initialisation is deferred.

Parameters app – Flask application object

Usage:

app = Flask(__name__)
ap1_v1 = ArrestedAPI()
api_v1.init_app(app)

register_all(resources)
Register each resource from an iterable.

Params resources An iterable containing Resource objects

Usage:

characters_resource = Resource(
'characters', __name__, url_prefix='/characters'

)
planets_resource = Resource('planets', __name__, url_prefix='/planets')
api_v1 = ArrestedAPI(prefix='/v1')
api_v1.register_all([characters_resource, planets_resource])

register_resource(resource, defer=False)
Register a Resource blueprint object against the Flask app object.

Parameters

• resource – Resource or flask.Blueprint object.

• defer – Optionally specify that registering this resource should be deferred. This option
is useful when users are creating their Flask app instance via a factory.

Deferred resource registration

Resources can optionally be registered in a deferred manner. Simply pass defer=True to ArrestedAPI.
register_resource to attach the resource to the API without calling register_blueprint.

This is useful when you’re using the factory pattern for creating your Flask app object as demonstrated
below. Deferred resource will not be registered until the ArrestedAPI instance is initialised with the Flask
app object.

Usage:

api_v1 = ArrestedAPI(prefix='/v1')
characters_resource = Resource(

'characters', __name__, url_prefix='/characters'
)
ap1_v1.register_resource(characters_resource, defer=True)

def create_app():

app = Flask(__name__)
api_v1.init_app(app) # deferred resources are now registered.

30 Chapter 6. The API Documentation / Guide

Arrested Documentation, Release 0.1.3

6.1.2 Resource

class arrested.resource.Resource(name, import_name, api=None, before_all_hooks=None, af-
ter_all_hooks=None, *args, **kwargs)

Resource extends Flasks existing Blueprint object and provides some utilty methods that make registering
Endpoint simpler.

Construct a new Reosurce blueprint. In addition to the normal Blueprint options, Resource accepts kwargs to
set request middleware.

Parameters

• api – API instance being the resource is being registered against.

• before_all_hooks – A list of middleware functions that will be applied before every
request.

• after_all_hooks – A list of middleware functions that will be applied after every re-
quest.

Middleware

Arrested supports applying request middleware at every level of the application stack. Resource middleware
will be applied for every Endpoint registered on that Resource.

character_resource = Resource(
'characters', __name__,
url_prefix='/characters',
before_all_hooks=[log_request]

)

Arrested request middleware works differently from the way Flask middleware does. Middleware registered at
the Resource and API level are consumed by the arrested.Endpoint.dispatch_request rather than
being fired via the Flask app instance. This is so we can pass the instance of the endpoint handling the request
to each piece of middleware registered on the API or Resource.

def api_key_required(endpoint):

if request.args.get('api_key', None) is None:
endpoint.return_error(422)

else:
get_client(request.args['api_key'])

character_resource = Resource(
'characters', __name__,
url_prefix='/characters',
before_all_hooks=[api_key_required]

)

Please note, Flask’s normal App and Blueprint middleware can still be used as normal, it just doesn’t recieve the
instance of the endpoint registered to handle the request.

add_endpoint(endpoint)
Register an Endpoint aginst this resource.

Parameters endpoint – Endpoint API Endpoint class

Usage:

6.1. Developer Interface 31

Arrested Documentation, Release 0.1.3

foo_resource = Resource('example', __name__)
class MyEndpoint(Endpoint):

url = '/example'
name = 'myendpoint'

foo_resource.add_endpoint(MyEndpoint)

init_api(api)
Registered the instance of ArrestedAPI the Resource is being registered against.

Parameters api – API instance being the resource is being registered against.

6.1.3 Endpoint

class arrested.endpoint.Endpoint
The Endpoint class represents the HTTP methods that can be called against an Endpoint inside of a particular
resource.

after_all_hooks = []
A list of functions called after all requests are dispatched

after_delete_hooks = []
A list of functions called after DELETE requests are dispatched

after_get_hooks = []
A list of functions called after GET requests are dispatched

after_patch_hooks = []
A list of functions called after PATCH requests are dispatched

after_post_hooks = []
A list of functions called after POST requests are dispatched

after_put_hooks = []
A list of functions called after PUT requests are dispatched

classmethod as_view(name, *class_args, **class_kwargs)
Converts the class into an actual view function that can be used with the routing system. Internally
this generates a function on the fly which will instantiate the View on each request and call the
dispatch_request method on it.

The arguments passed to as_view are forwarded to the constructor of the class.

before_all_hooks = []
A list of functions called before any specific request handler methods are called

before_delete_hooks = []
A list of functions called before DELETE requests are dispatched

before_get_hooks = []
A list of functions called before GET requests are dispatched

before_patch_hooks = []
A list of functions called before PATCH requests are dispatched

before_post_hooks = []
A list of functions called before POST requests are dispatched

before_put_hooks = []
A list of functions called before PUT requests are dispatched

32 Chapter 6. The API Documentation / Guide

Arrested Documentation, Release 0.1.3

delete(*args, **kwargs)
Handle Incoming DELETE requests and dispatch to handle_delete_request method.

dispatch_request(*args, **kwargs)
Dispatch the incoming HTTP request to the appropriate handler.

get(*args, **kwargs)
Handle Incoming GET requests and dispatch to handle_get_request method.

classmethod get_name()
Returns the user provided name or the lower() class name for use when registering the Endpoint with a
Resource.

Returns registration name for this Endpoint.

Return type string

get_request_handler()
Return the Endpoints defined Endpoint.request_handler.

Returns A instance of the Endpoint specified RequestHandler.

Return type RequestHandler

get_request_handler_params(**params)
Return a dictionary of options that are passed to the specified RequestHandler.

Returns Dictionary of RequestHandler config options.

Return type dict

get_response_handler()
Return the Endpoints defined Endpoint.response_handler.

Returns A instance of the Endpoint specified ResonseHandler.

Return type ResponseHandler

get_response_handler_params(**params)
Return a dictionary of options that are passed to the specified ResponseHandler.

Returns Dictionary of ResponseHandler config options.

Return type dict

make_response(rv, status=200, headers=None, mime=’application/json’)
Create a response object using the flask.Response class.

Parameters

• rv – Response value. If the value is not an instance of werkzeug.wrappers.
Response it will be converted into a Response object.

• status – specify the HTTP status code for this response.

• mime – Specify the mimetype for this request.

• headers – Specify dict of headers for the response.

methods = ['GET', 'POST', 'PUT', 'PATCH', 'DELETE']
list containing the permitted HTTP methods this endpoint accepts

name = None
The name used to register this endpoint with Flask’s url_map

patch(*args, **kwargs)
Handle Incoming PATCH requests and dispatch to handle_patch_request method.

6.1. Developer Interface 33

Arrested Documentation, Release 0.1.3

post(*args, **kwargs)
Handle Incoming POST requests and dispatch to handle_post_request method.

process_after_request_hooks(resp)
Process the list of before_{method}_hooks and the before_all_hooks. The hooks will be processed in the
following order

1 - any after_{method}_hooks defined on the arrested.Endpoint object 2 - any after_all_hooks
defined on the arrested.Endpoint object 2 - any after_all_hooks defined on the arrested.
Resource object 4 - any after_all_hooks defined on the arrested.ArrestedAPI object

process_before_request_hooks()
Process the list of before_{method}_hooks and the before_all_hooks. The hooks will be processed in the
following order

1 - any before_all_hooks defined on the arrested.ArrestedAPI object 2 - any before_all_hooks
defined on the arrested.Resource object 3 - any before_all_hooks defined on the arrested.
Endpoint object 4 - any before_{method}_hooks defined on the arrested.Endpoint object

put(*args, **kwargs)
Handle Incoming PUT requests and dispatch to handle_put_request method.

request_handler
alias of arrested.handlers.RequestHandler

response_handler
alias of arrested.handlers.ResponseHandler

return_error(status, payload=None)
Error handler called by request handlers when an error occurs and the request should be aborted.

Usage:

def handle_post_request(self, *args, **kwargs):

self.request_handler = self.get_request_handler()
try:

self.request_handler.process(self.get_data())
except SomeException as e:

self.return_error(400, payload=self.request_handler.errors)

return self.return_create_response()

url = ''
The URL this endpoint is mapped against. This will build on top of any url_prefix defined at the API and
Resource level

6.1.4 Mixins

class arrested.mixins.GetListMixin
Base ListMixin class that defines the expected API for all ListMixins

get_objects()

handle_get_request()
Handle incoming GET request to an Endpoint and return an array of results by calling GetListMixin.
get_objects.

See also:

GetListMixin.get_objects Endpoint.get

34 Chapter 6. The API Documentation / Guide

Arrested Documentation, Release 0.1.3

list_response(status=200)
Pull the processed data from the response_handler and return a response.

Parameters status – The HTTP status code returned with the response

class arrested.mixins.CreateMixin
Base CreateMixin class that defines the expected API for all CreateMixins

create_response(status=201)
Generate a Response object for a POST request. By default, the newly created object will be passed to the
specified ResponseHandler and will be serialized as the response body.

handle_post_request()
Handle incoming POST request to an Endpoint and marshal the request data via the specified Re-
questHandler. CreateMixin.save_object. is then called and must be implemented by mixins
implementing this interfce.

See also:

CreateMixin.save_object Endpoint.post

save_object(obj)
Called by CreateMixin.handle_post_request ater the incoming data has been marshalled by
the RequestHandler.

Parameters obj – The marhsaled object from RequestHandler.

class arrested.mixins.ObjectMixin
Mixin that provides an interface for working with single data objects

get_object()
Called by GetObjectMixin.handle_get_request. Concrete classes should implement this
method and return object typically by id.

Raises NotImplementedError

obj
Returns the value of ObjectMixin.get_object and sets a private property called _obj. This property
ensures the logic around allow_none is enforced across Endpoints using the Object interface.

Raises werkzeug.exceptions.BadRequest

Returns The result of :meth:ObjectMixin.get_object‘

object_response(status=200)
Generic response generation for Endpoints that return a single serialized object.

Parameters status – The HTTP status code returned with the response

Returns Response object

class arrested.mixins.GetObjectMixin
Base GetObjectMixins class that defines the expected API for all GetObjectMixins

handle_get_request()
Handle incoming GET request to an Endpoint and return a single object by calling GetListMixin.
get_object.

See also:

GetListMixin.get_objects Endpoint.get

class arrested.mixins.PutObjectMixin
Base PutObjectMixins class that defines the expected API for all PutObjectMixin

6.1. Developer Interface 35

Arrested Documentation, Release 0.1.3

handle_put_request()

put_request_response(status=200)
Pull the processed data from the response_handler and return a response.

Parameters status – The HTTP status code returned with the response

update_object(obj)
Called by PutObjectMixin.handle_put_request ater the incoming data has been marshalled
by the RequestHandler.

Parameters obj – The marhsaled object from RequestHandler.

class arrested.mixins.PatchObjectMixin
Base PatchObjectMixin class that defines the expected API for all PatchObjectMixin

handle_patch_request()

patch_object(obj)
Called by PatchObjectMixin.handle_patch_request ater the incoming data has been mar-
shalled by the RequestHandler.

Parameters obj – The marhsaled object from RequestHandler.

patch_request_response(status=200)
Pull the processed data from the response_handler and return a response.

Parameters status – The HTTP status code returned with the response

class arrested.mixins.DeleteObjectMixin
Base DeletehObjecttMixin class that defines the expected API for all DeletehObjecttMixins.

delete_object(obj)
Called by DeleteObjectMixin.handle_delete_request.

Parameters obj – The marhsaled object being deleted.

delete_request_response(status=204)
Pull the processed data from the response_handler and return a response.

Parameters status – The HTTP status code returned with the response

handle_delete_request()

6.1.5 Handlers

class arrested.handlers.Handler(endpoint, payload_key=’payload’, **params)

handle(data, **kwargs)
Invoke the handler to process the provided data. Concrete classes should override this method to provide
specific capabilties for the choosen method of marshaling and serializing data.

Parameters data – The data to be processed by the Handler.

Returns The data processed by the Handler

Return type mixed

Here’s an example of a RequestHandler integrating with the Kim library.

36 Chapter 6. The API Documentation / Guide

Arrested Documentation, Release 0.1.3

def handle(self, data):
try:

if self.many:
return self.mapper.many(raw=self.raw,

**self.mapper_kwargs)
→˓ .marshal(data, role=self.role)

else:
return self.mapper(data=data, raw=self.raw,

**self.mapper_kwargs)
→˓ .marshal(role=self.role)

except MappingInvalid as e:
self.errors = e.errors

process(data=None, **kwargs)
Process the provided data and invoke Handler.handle method for this Handler class.

Params data The data being processed.

Returns self

Return type Handler

def post(self, *args, **kwargs):
self.request = self.get_request_handler()
self.request.process(self.get_data())
return self.get_create_response()

class arrested.handlers.JSONResponseMixin
Provides handling for serializing the response data as a JSON string.

get_response_data()
serialzie the response data and payload_key as a JSON string.

Returns JSON serialized string

Return type bytes

class arrested.handlers.JSONRequestMixin
Provides handling for fetching JSON data from the FLask request object.

get_request_data()
Pull JSON from the Flask request object.

Returns Deserialized JSON data.

Return type mixed

Raises flask.exceptions.JSONBadRequest

class arrested.handlers.RequestHandler(endpoint, payload_key=’payload’, **params)
Basic default RequestHandler that expects the will pull JSON from the Flask request object and return it.

process(data=None)
Fetch incoming data from the Flask request object when no data is supplied to the process method. By
default, the RequestHandler expects the incoming data to be sent as JSON.

class arrested.handlers.ResponseHandler(endpoint, payload_key=’payload’, **params)
Basic default ResponseHanlder that expects the data passed to it to be JSON serializable without any modifica-
tions.

6.1. Developer Interface 37

Arrested Documentation, Release 0.1.3

6.1.6 Exceptions

exception arrested.exceptions.ArrestedException

38 Chapter 6. The API Documentation / Guide

Python Module Index

a
arrested, 9

39

Arrested Documentation, Release 0.1.3

40 Python Module Index

Index

A
add_endpoint() (arrested.resource.Resource method), 31
after_all_hooks (arrested.endpoint.Endpoint attribute), 32
after_delete_hooks (arrested.endpoint.Endpoint at-

tribute), 32
after_get_hooks (arrested.endpoint.Endpoint attribute),

32
after_patch_hooks (arrested.endpoint.Endpoint attribute),

32
after_post_hooks (arrested.endpoint.Endpoint attribute),

32
after_put_hooks (arrested.endpoint.Endpoint attribute),

32
arrested (module), 9, 29
ArrestedAPI (class in arrested.api), 29
ArrestedException, 38
as_view() (arrested.endpoint.Endpoint class method), 32

B
before_all_hooks (arrested.endpoint.Endpoint attribute),

32
before_delete_hooks (arrested.endpoint.Endpoint at-

tribute), 32
before_get_hooks (arrested.endpoint.Endpoint attribute),

32
before_patch_hooks (arrested.endpoint.Endpoint at-

tribute), 32
before_post_hooks (arrested.endpoint.Endpoint at-

tribute), 32
before_put_hooks (arrested.endpoint.Endpoint attribute),

32

C
create_response() (arrested.mixins.CreateMixin method),

35
CreateMixin (class in arrested.mixins), 35

D
delete() (arrested.endpoint.Endpoint method), 33

delete_object() (arrested.mixins.DeleteObjectMixin
method), 36

delete_request_response() (ar-
rested.mixins.DeleteObjectMixin method),
36

DeleteObjectMixin (class in arrested.mixins), 36
dispatch_request() (arrested.endpoint.Endpoint method),

33

E
Endpoint (class in arrested.endpoint), 32

G
get() (arrested.endpoint.Endpoint method), 33
get_name() (arrested.endpoint.Endpoint class method),

33
get_object() (arrested.mixins.ObjectMixin method), 35
get_objects() (arrested.mixins.GetListMixin method), 34
get_request_data() (arrested.handlers.JSONRequestMixin

method), 37
get_request_handler() (arrested.endpoint.Endpoint

method), 33
get_request_handler_params() (ar-

rested.endpoint.Endpoint method), 33
get_response_data() (ar-

rested.handlers.JSONResponseMixin method),
37

get_response_handler() (arrested.endpoint.Endpoint
method), 33

get_response_handler_params() (ar-
rested.endpoint.Endpoint method), 33

GetListMixin (class in arrested.mixins), 34
GetObjectMixin (class in arrested.mixins), 35

H
handle() (arrested.handlers.Handler method), 36
handle_delete_request() (ar-

rested.mixins.DeleteObjectMixin method),
36

41

Arrested Documentation, Release 0.1.3

handle_get_request() (arrested.mixins.GetListMixin
method), 34

handle_get_request() (arrested.mixins.GetObjectMixin
method), 35

handle_patch_request() (ar-
rested.mixins.PatchObjectMixin method),
36

handle_post_request() (arrested.mixins.CreateMixin
method), 35

handle_put_request() (arrested.mixins.PutObjectMixin
method), 35

Handler (class in arrested.handlers), 36

I
init_api() (arrested.resource.Resource method), 32
init_app() (arrested.api.ArrestedAPI method), 29

J
JSONRequestMixin (class in arrested.handlers), 37
JSONResponseMixin (class in arrested.handlers), 37

L
list_response() (arrested.mixins.GetListMixin method),

35

M
make_response() (arrested.endpoint.Endpoint method),

33
methods (arrested.endpoint.Endpoint attribute), 33

N
name (arrested.endpoint.Endpoint attribute), 33

O
obj (arrested.mixins.ObjectMixin attribute), 35
object_response() (arrested.mixins.ObjectMixin method),

35
ObjectMixin (class in arrested.mixins), 35

P
patch() (arrested.endpoint.Endpoint method), 33
patch_object() (arrested.mixins.PatchObjectMixin

method), 36
patch_request_response() (ar-

rested.mixins.PatchObjectMixin method),
36

PatchObjectMixin (class in arrested.mixins), 36
post() (arrested.endpoint.Endpoint method), 33
process() (arrested.handlers.Handler method), 37
process() (arrested.handlers.RequestHandler method), 37
process_after_request_hooks() (ar-

rested.endpoint.Endpoint method), 34

process_before_request_hooks() (ar-
rested.endpoint.Endpoint method), 34

put() (arrested.endpoint.Endpoint method), 34
put_request_response() (arrested.mixins.PutObjectMixin

method), 36
PutObjectMixin (class in arrested.mixins), 35

R
register_all() (arrested.api.ArrestedAPI method), 30
register_resource() (arrested.api.ArrestedAPI method), 30
request_handler (arrested.endpoint.Endpoint attribute),

34
RequestHandler (class in arrested.handlers), 37
Resource (class in arrested.resource), 31
response_handler (arrested.endpoint.Endpoint attribute),

34
ResponseHandler (class in arrested.handlers), 37
return_error() (arrested.endpoint.Endpoint method), 34

S
save_object() (arrested.mixins.CreateMixin method), 35

U
update_object() (arrested.mixins.PutObjectMixin

method), 36
url (arrested.endpoint.Endpoint attribute), 34

42 Index

	Introducing Arrested
	Flask-Arrested Features
	🚀 Get started in under a minute..
	The User Guide
	Introduction
	Installation
	Guide

	Integrations & Recipies
	Flask-SQLAlchemy
	Kim
	Marshmallow

	The API Documentation / Guide
	Developer Interface

	Python Module Index

